A study of isogeometric analysis for scalar convection-diffusion equations

نویسندگان

  • Volker John
  • Liesel Schumacher
چکیده

Isogeometric Analysis (IGA), in combination with the Streamline Upwind Petrov– Galerkin (SUPG) stabilization, is studied for the discretization of steady-state convection-diffusion equations. Numerical results obtained for the Hemker problem are compared with results computed with the SUPG finite element method of the same order. Using an appropriate parameterization for IGA, the computed solutions are much more accurate than those obtained with the finite element method, both in terms of the size of spurious oscillations and of the sharpness of layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for large-scale systems of multipatch continuous Galerkin IgA equations

The dual-primal isogeometric tearing and interconnecting (IETI-DP) method is the adaption of the dual-primal finite element tearing and interconnecting (FETI-DP) method to isogeometric analysis of scalar elliptic boundary value problems like, e.g., diffusion problems with heterogeneous diffusion coefficients. The purpose of this paper is to extent the already existing results on condition numbe...

متن کامل

Numerical solution of Convection-Diffusion equations with memory term based on sinc method

‎In this paper‎, ‎we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions‎. ‎Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space‎. ‎The accuracy and error analysis of the method are discussed‎. ‎Numeric...

متن کامل

L-stability of periodic stationary solutions of scalar convection-diffusion equations

The aim of this paper is to study the L1-stability of periodic stationary solutions of scalar convection-diffusion equations. We obtain dispersion in L2 for all space dimensions using Kružkov type entropy. And when the space dimension is one, we estimate the number of sign changes of a solution to obtain L1-stability. Keyword : L-stability, periodic stationary solutions, entropy, dispersion ine...

متن کامل

Travelling waves in nonlinear diffusion-convection-reaction

The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the study of a singular nonlinear integral equation. This article is devoted to demonstrating how this c...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2014